The generator matrix

 1  0  1  1  1  1  1  1  0  1  1  6  1  1  1 X+6 2X  1  1  1 X+6  1  1  1  1  1  1  1  1 2X+6  X  1  1  1  1  1  1  1 2X  1  1  X  1  1 2X  1  0  1  1  1  1  1  1  1  1 X+6 2X X+6 2X+3  1  1  1 2X  1  1  3  6  1  1  1  1  1  1
 0  1  1  8 X+6 X+5 2X+7 2X  1  8 X+7  1 2X+1  5 2X+6  1  1  6  X 2X+5  1 X+1 2X+8 2X+7  0 X+8 2X+8 X+3  1  1  1  7  8 X+1 X+8  6 X+8 X+6  1 2X+4 X+2  1 2X+2  4  1 X+1  1  6 2X+2 X+4 2X+5  X  2 2X+8 X+6  1  1  1  1 X+2  7 X+4  1 2X 2X+3  1  1  6  5  4 X+3 2X+2 X+8
 0  0 2X  0  6  6  3  0 2X+6 2X+3 X+3 X+3 X+3 X+6 X+6 2X+6 2X X+3 X+3  X  6  0  3 2X+6 2X+3 X+6 2X+6 2X X+3 X+6 X+6  3  3  0 X+6 X+3 2X+6 X+6 2X+3  X  X X+3  0 X+6 2X 2X+3 2X+6  3 2X  3  3  0  X X+3  0  6 X+6 2X+6  X  3  0 X+3 X+3 2X 2X+3 X+6 2X X+6 2X 2X+3 X+3 X+6 X+3
 0  0  0  3  3  0  6  6  3  0  0  6  6  6  0  0  6  6  3  6  3  3  0  6  3  3  3  6  0  0  6  3  0  0  0  3  0  6  0  0  6  3  6  3  3  6  6  6  6  6  3  0  0  3  6  0  6  6  0  3  0  6  6  0  6  0  6  0  3  0  6  3  0

generates a code of length 73 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 138.

Homogenous weight enumerator: w(x)=1x^0+268x^138+324x^139+702x^140+1436x^141+1014x^142+1860x^143+1682x^144+1602x^145+1860x^146+2130x^147+1548x^148+1656x^149+1482x^150+714x^151+654x^152+366x^153+120x^154+30x^155+90x^156+18x^157+18x^158+30x^159+6x^161+20x^162+6x^163+18x^164+14x^165+4x^168+10x^171

The gray image is a code over GF(3) with n=657, k=9 and d=414.
This code was found by Heurico 1.16 in 1.41 seconds.